

Fluid Management & Oil Condition Monitoring

Technical Handbook

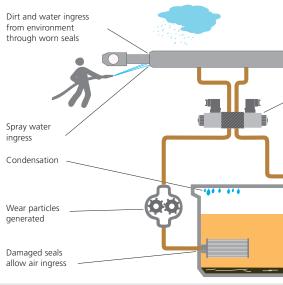
Solutions for clean oil

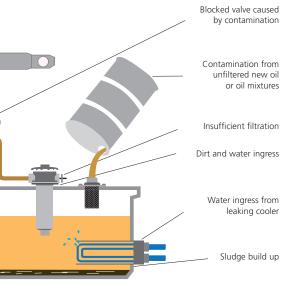
Technical Handbook

Index

Damaging Factors	4-5
Sources of pollution	6-7
Make pollution visible	8-9
Water Content	10-11
Solutions for Clean Oil	12-13
Products	14-15
Cleanliness Standards	16-17
Target Cleanliness Levels	18
Return on Investment Calculation	19
Viscosity/Temperature Diagrams	20-23
ARGO-HYTOS worldwide	24

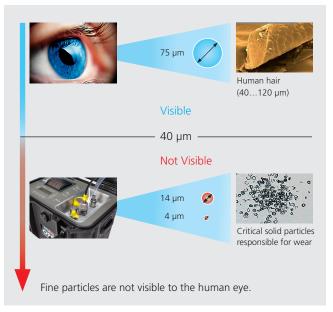
Damaging Factors

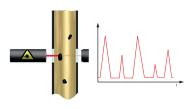

Page 4


Technical Handbook

Page 6

Sources of pollution


Contaminant	Cause
Dirt	Start up contamination, oil contamination from environment, dirt ingress during maintenance/repair, component breakdown, wear
Water	Leaking cooler, damaged seals, no/insufficient filler cap, condensation
Air	Product design, leaks, damaged seals, low oil level
Heat	Blocked valve, damaged cooler
Mixture	Wrong fluid added to system
Shear	Overstressed fluid



Effect on Systems	Detected by	Solution
Early breakdown, increased wear, reduced system performance/lifetime	Particle counter	Filter oil to correct target cleanliness level (TCL)
Loss of oil performance, oil life shortened, corrosion	Humidity sensor	Water removal element, vacuum unit, oil change
Cavitation, oxidation, oil life shortened	Dielectricity/conductivity/viscosity sensor	Seal system, add/change oil
Loss of oil performance, oil life shortened, component damage	Temperature sensor	Check/repair system, change oil
Damaged fluid, loss of system performance	Dielectricity/conduc- tivity/viscosity sensor	Drain system, flush, refill with filtered oil
Oil life shortened, damaged fluid	Dielectricity/conduc- tivity/viscosity sensor	Check system, change oil

www.argo-hytos.com

Make pollution visible

Light blocking sensor

Oil passing the measuring cell is irradiated by a laser beam and the light intensity is measured by a detector. Particles contained in the oil block the light and the signal at the detector reduces proportionally to the particle size. Thereby particles may be detected and their size can be determined. Electronics interpret the signal.

Page 8

Visually the oil samples look the same. One is however considerably more contaminated than the other.

Automatic particle counters give a fast, accurate and repeatable contamination picture of your oil.

Photos showing damages

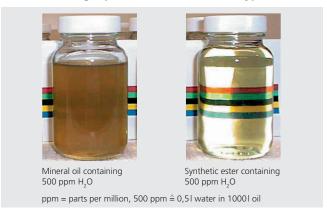
Bearing damaged by pitting

Shaft damaged by erosion

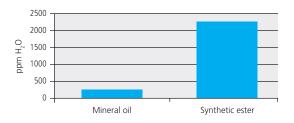
Damage caused by oil aging

Clutch case damaged by oil aging

Oil mixture damage causing floculation

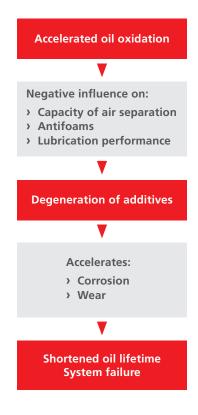


Bearing seal damaged by microdiesel effect


Technical Handbook

Water Content

Water absorbing capacities of different fluid types



10.000 ppm	1 %
1.000 ppm	0,1 %
100 ppm	0.01 %

The water absorbing capacity varies from oil to oil. At saturation point (>100 % Relative humidity) free water will cause the fluid to have a cloudy appearance.

Consequences of water contamination

An installed humidity sensor gives early warning, permitting fast action to extend the oil lifetime and machine availability.

Solutions for Clean Oil

Oil Transfer with/without particle monitoring

Single pass filtration with/without particle monitoring during filling of new hydraulic equipment/systems

Process

Mobile off-line filtration with/without particle monitoring

Multipass filtration with or without particle monitoring during oil flushing

Permanent off-line filtration with/without particle monitoring

Permanent multipass filtration with or without particle monitoring

Periodic Oil ConditionMonitoring

Periodic oil condition monitoring, either online, on-machine or in laboratory

Periodic Oil Condition-Monitoring

Permanent on-line oil condition monitoring

Reason	Product
Remove contamination from new oil – reduce start up failures, reduce warranty claims	Mobile filter systems
Remove wear debris, contamination and/or water to extend oil life, reduce breakdowns and measure the oil cleanliness	Mobile filter systems
Remove wear debris, contamination and/or water to extend oil life, reduce breakdowns and measure the oil cleanliness	Stationary off-line filter systems Particle monitors
Regular monitoring of the oil condition. Troubleshooting tool, measurement of the oil cleanliness after completion and analysis of the oil condition during operation. Reduction of external lab costs by up to 90%.	Portable particle counters
Follow proactive/predictive maintenance regimes. Reduce breakdowns. Reduce lab costs. Roll-off cleanliness verification/certification. System control.	Particle monitors Oil condition sensors Stationary off-line filter systems

Products

Stationary off-line filter systems

Simply and rapidly fit to your existing systems. Get maximum fluid performance and lifetime with permanent off-line cleaning. Flow rates from 4 to 650 l/min, filter finenesses from 3 µm upwards. Water removal elements available.

Mobile filter systems

Easy to use systems for through filter filling and cyclic cleaning with or without particle monitoring.

Flow rates from 3 to 45 l/min, filter finesses from 3 μ m upwards. Water removal elements available.

Page 14

Online oil condition monitors

Prevent damage with early stage diagnosis by using OPCom II for continous real time online particle monitoring and LubCos Level for combined measurement of filling level and oil condition as well as LubCos H₂0+II for moisture content and oil ageing measurement.

OPCom II

Sensors

LubMon Visu

Portable particle counters

Our wide range of particle counters and monitors meet all your requirements. Use OPCount for bottle and online particle counting with viscosity and temperature measurement, in your lab or in field. Use OPCom Portable Oil Lab for plug and play online sampling, with built-in battery and memory, for day to day monitoring and as a troubleshooting tool.

OPCount

Cleanliness Standards

ISO 4406:1999

Counts/ml, Cumulative

ISO Class	Particles/ml		
0	0	0,01	
1	0,01	0,02	
2	0,02	0,04	
3	0,04	0,08	
4	0,08	0,16	
5	0,16	0,32	
6	0,32	0,64	
7	0,64	1,3	
8	1,3	2,5	
9	2,5	5	
10	5	10	
11	10	20	
12	20	40	
13	40	80	
14	80	160	
15	160	320	
16	320	640	
17	640	1.300	
18	1.300	2.500	
19	2.500	5.000	
20	5.000	10.000	
21	10.000	20.000	
22	20.000	40.000	
23	40.000 80.000		
24	80.000	160.000	
25	160.000	320.000	
26	320.000	640.000	
27	640.000	1.300.000	
28	1.300.000	2.500.000	
x28	2.500.000		

Although there is no direct relationship between ISO 4406:1999 and NAS 1638 a rough guide can be found below.

NAS	ISO
3	-/12/9
4	-/13/10
5	-/14/11
6	-/15/12
7	-/16/13
8	-/17/14
9	-/18/15
10	-/19/16
11	-/20/17

Note:

NAS 1638 has been replaced by SAE AS 4059 in 2001.

ISO 4406:1999 is a 3 digit code, representing the cumulative counts per ml at 4, 6 and 14 µm(c). The counts at each size are compared with the table to find the contamination code. The code is written as 3 numbers separated by a J^{\prime} . For example: 19/17/14. The first number represents the count at 4 µm(c), the second at 6 µm(c) and the third at 14 µm(c). More details can be found in ISO Standard 4406:1999.

SAE AS 4059 E Counts/100 ml, cumulative

NAS 1638 has been replaced by SAE AS 4059 in 2001.

SAE AS 4059	I	Max. conta	mination	limits. Par	ticles/100	ml
Size, ISO 4402 calibration	l					
or optical microscope	> 1 µm	>5µm >	15µm >	25µm >	50µm >	100 µm
Size, ISO 11171 calibratio	n					
or electron microscope	$>4 \mu m(c)$	> 6 µm(c) >	> 14 µm(c) >	> 21 µm(c) >	- 38 µm(c) >	· 70 μm(c)
Size Code	Α	В	C	D	Е	F
000	195	76	14	3	1	0
00	390	152	27	5	1	0
0	780	304	54	10	2	0
1	1.560	609	109	20	4	1
2	3.120	1.217	217	39	7	1
_ 3	6.250	2.432	432	76	13	2
4	12.500	4.864	864	152	26	4
5	25.000	9.731	1.731	306	53	8
6	50.000	19.462	3.462	612	106	16
7	100.000	38.924	6.924	1.224	212	32
8	200.000	77.849	13.849	2.449	424	64
9	400.000	155.698	27.698	4.898	848	128
10	800.000	311.396	55.396	9.796	1.696	256
11	1.600.000	622.792	110.792	19.592	3.392	512
12	3.200.000	1.245.584	221.584	39.184	6.784	1.024

Data is sorted into cumulative particle counts per 100 ml, and is expressed either as the total number of particles for a given size (for example AS 4059 Class 6) or by designating a class for each size range (for example 6B/5C/4D/3E/3F).

Counts/100 ml, differential*

Classes	5 to 15μm	15 to 25 μm	25 to 50 μm	50 to 100 μm	over 100 µm
00	125	22	4	1	0
0	250	44	8	2	0
1	500	89	16	3	1
2	1.000	178	32	6	1
3	2.000	356	63	11	2
4	4.000	712	126	22	4
5	8.000	1.425	253	45	8
6	16.000	2.850	506	90	16
7	32.000	5.700	1.012	180	32
8	64.000	11.400	2.025	360	64
9	128.000	22.800	4.050	720	128
10	256.000	45.600	8.100	1.440	256
11	512.000	91.200	16.200	2.880	512
12	1.024.000	182.400	32.400	5.760	1.024

Differential particle counts per 100 ml at various size ranges.

For example, for a classification of NAS 6, the particle counts in each particle size range must be below the counts/100 ml shown in the table for NAS class 6.

www.argo-hytos.com

^{*}Classes and contamination limits identical to NAS 1638.

Technical Handbook

Target Cleanliness Levels

Recommended Target Cleanliness Levels (TCL) according to ISO 4406:1999 for different system components.

Pumps	
Axial piston pumps	21/18/15
Radial piston pumps	21/18/15
Gear pumps	21/18/15
Vane pumps	20/17/14
Motors	
Axial piston pumps	21/18/15
Radial piston pumps	21/18/15
Gear pumps	21/18/15
Vane pumps	20/17/14
Valves	
Directional control valves (solenoid valves)	21/18/15
Pressure valves	21/18/15
Flow control valves	21/18/15
Check valves	21/18/15
Proportional valves	20/17/14
Servo valves	17/14/11
Cylinders	21/18/15

If the operating pressure is increased in a system, it is necessary to improve the oil cleanliness in order to achieve the same wear lifetime for the components.

Operating pressure	Change in oil cleanliness
0 - 100 bar	3 classes worse
100 - 160 bar	1 class worse
160 - 210 bar	none
210 - 250 bar	1 class better
250 - 315 bar	2 classes better
315 - 420 bar	3 classes better
420 - 500 bar	4 classes better
500 - 630 bar	5 classes better

By improving system cleanliness the lifetime of the hydraulic or lubrication system can be extended:

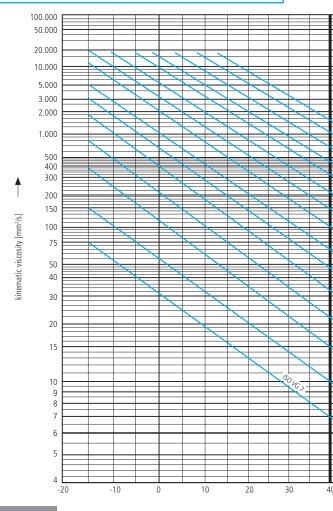
Type of System	Initial ISO Code	Target ISO Code	Lifetime extended by:
Hydraulic	-/19/17	-/14/11	x 4
Lube	-/21/19	-/15/12	х 3

Return on Investment Calculation

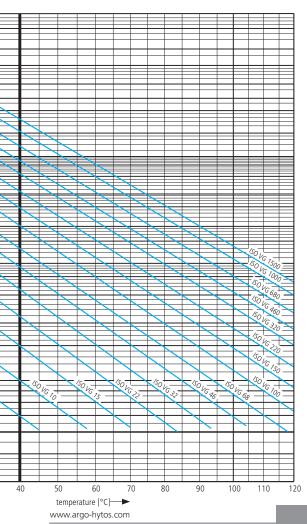
Calculate your return on investment		Example	Formula	Your figures			
No. of machines		3					
Annual operating hours		4000					
Hourly machine costs		45					
Hourly labour cost		45					
Current machine uptime %		95					
Current machine downtime %		5					
Downtime hours total		4000 x 3 x 0,05=600	(b x a)/100 x f				
Mechanical/electrical failure		500					
Hydraulic failure		100					
Caused by the fluid		80	j x 0,8				
Fluid related downtime costs		3600	kхс				
Labour costs for repair		3600	k x d				
Total maintenance cost		7200	I + m				
Fluid service will prevent up to 80% of fluid related failures leaving 20%							
Remaining downtime hours		16	k x 0,2				
Reduction in downtime costs		720	I x 0,2				
Reduced labour costs		720	m x 0,2				

1440

5760

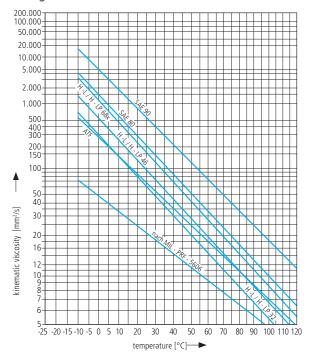

n x 0,2

Total new maintenance cost (o)

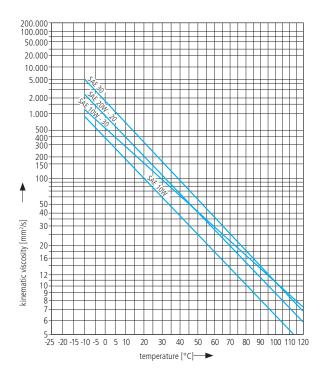

Total savings for your facility, simply by caring

for your oil:

Viscosity/Temperature Diagram



Page 20



Viscosity/Temperature Diagram

Hydraulic oils, motor vehicle transmission oils, automatic transmission fluid oils and oils according to MIL - PRF - 5606

Motor oils

International

ARGO-HYTOS worldwide

Benelux Brazil China

Czech Republik France

Germany Great Britain

India Italy Poland

Russia Scandinavia Turkey

USA

info.br@argo-hytos.com
info.cn@argo-hytos.com
info.cz@ argo-hytos.com
info.fr@argo-hytos.com
info.de@argo-hytos.com
info.uk@argo-hytos.com
info.in@argo-hytos.com
info.it@argo-hytos.com
info.pl@argo-hytos.com
info.ru@argo-hytos.com
info.ru@argo-hytos.com
info.ru@argo-hytos.com
info.ru@argo-hytos.com
info.se@argo-hytos.com
info.se@argo-hytos.com

info.us@argo-hytos.com

info.benelux@argo-hytos.com

